GeoDict for Fuel Cells

Fuel Cells

When using renewable energy sources, the moment of electricity generation is usually not identical with the moment of energy demand. Regardless of whether solar, hydroelectric or wind energy is used, the main challenge is to store the electrical energy generated challenge is the efficient intermediate storage of the generated electrical energy.

According to the current state of the art, this is mainly achieved by storing the electrical energy in the form of chemical energy. In addition to the battery, conversion by electrolysis and storage in the form of hydrogen plays a pioneering role here. The energy stored energy can then be released again in a fuel cell. In addition to hydrogen, other fuels such as methanol or natural gas can be used.

Whether it is an electrolyzer for hydrogen production, a polymer electrolyte fuel cell (PEMFC) or a solid oxide fuel cell (SOFC), each system places enormous demands on the properties of the materials used. demands on the properties of the materials used. Moreover, in many areas, next-generation functional materials still have to be have yet to be developed. The microstructure of the materials is crucial: whether for separators, gas diffusion layers or electrodes, the microstructure plays a decisive role in determining the efficiency, performance and service life of the system components.

With the scientific software GeoDict - The Digital Materials Laboratory you digitize your materials research and development and rely on the customized solutions of Math2Market GmbH: Use the digital technology of the next generation for the development of materials of the next generation materials today!

The result: Efficient and safe electrolysis and fuel cells for energy storage and mobility!

GeoDict for Fuel Cells

GeoDict® for Electrochemistry

  • Save time, resources and costs with GeoDct simulations compared to purely experimental approaches.
  • Digitally develop, test and improve the energy materials of the future using GeoDict simulations.

GeoDict software creates realistic 3D models of the microstructure of materials used in electrolyzers (separators) and fuel cells (PEM, GDL, MPL, CL, electrodes) are digitally generated. The critical material properties of these models are then characterized.

The goal of the simulation is to optimize each material according to its requirements and to improve the performance of the energy materials.

The GeoDict software is part of cutting-edge fuel cell research funded under Horizon 2020 (EU funding for research and Innovation) and is carried out by leading academic and industrial institutions.

Simulate and calculate various parameters to improve and design your energy materials:.

  • Geometric parameters: Porosity, pore size distribution, surface area, length of contact lines, tortuosity.
  • Conduction parameters: Thermal conductivity, thermal flux, temperature distribution, electrical conductivity, electrical flux, electrostatic potential distribution.
  • Saturation parameters: Saturation exponent, capillary pressure curve, variable contact angles.
  • Diffusion and flow parameters: Permeability, diffusivity, Gurley value, particle advection and diffusion, particle concentration.

GeoDict simulations address key issues in fuel cell materials research and the resulting two-phase fluid flow properties.

The GeoDict® package for Electrochemistry

The GeoDict package for electrochemistry has been compiled for the simulation of electrochemical processes. It includes both the interfaces and material modeling modules to import and design 3D models, as well as the Material Properties Modules.

Module Recommendations
Interfaces ImportGeo-Vol
Material Analysis GrainFind-AI FiberFind-AI PoroDict + MatDict
Material Design* GrainGeo FiberGeo GrainFind-AI WeaveGeo
Material Simulation* DiffuDict ConductoDict FlowDict ElastoDict AddiDict SatuDict

* Which modules suit you best depends on the type of your application.