## GEODICT

The Digital Material Laboratory



MATH 2 MARKET

## GEODICT WORKFLOW FOR DIGITAL FILTER MEDIA DEVELOPMENT

Import and segmentation



Image processing of the CT scans of a surgical face mask:

- CT Scan provided by the Heilbronn University of Applied Sciences, Germany
- 2-layer filter medium of an existing well-known surgical face mask was scanned by nano-CT with a resolution of 400 nm
- The ImportGeo-Vol module of GeoDict was used to import, process, and segment the scanned images

Result: Digital structure of the filter media

- The FiberFind module was used to analyze the digital structure and obtain relevant information about all fibers
- The information obtained was used to evaluate the sample with regard to the geometrical characteristics such as:
  - Fiber diameter
  - Fiber orientation
  - Fiber curliness

Fiber



### **Result**: Statistical description of fibers

- Initial pressure drop and filtration efficiency of filter medium simulated using the FilterDict module
- Simulation results compared and validated with:
  - Laboratory experiments performed by Berger et al. from Heilbronn University of Applied Science, Germany

Analysis of filter

# Mail of the second of the seco

Optimization of filter medium

DESIGN, MODEL, AND SIMULATE
DIGITAL PROTOTYPES DIRECTLY IN GEODICT

### **Result:** Validated filter model and performance results

- Optimization of filter medium focused on improving the fine layer
  - This layer performs the main filtration task and most of the pressure loss occurs in this specific layer
  - Generation of a digital twin using the FiberGeo module and entering the statistical parameters from the analysis with FiberFind.
- Extensive parameter study conducted during optimization:
  - Large number of 3D digital prototypes was modeled and simulated with GeoDict
  - Automation capabilities of the GeoDict software through Python scripts (GeoPy) were used to facilitate this process

Result: Improved digital prototype shows lower initial pressure drop, equal filtration efficiency, and needs less material

Math2Market GmbH | Richard-Wagner-Str. 1 | 67655 Kaiserslautern, Germany 

↑ +49 631 205 605 0 +49 631 205 605 99 filtration@math2market.de

★ filtration@math2market.de