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Abstract

3D imaging methods, such as micro Computed Tomography (µCT) or focused ion beam scanning electron 
microscopy (FIB-SEM), allow deep insights into the three-dimensional structure of porous materials. The 
resulting 3D data sets are very large, often exceeding 2000³ or 8 billion volume elements called voxels. 
Researchers and engineers are interested in determining effective homogenized material properties based 
on these data sets to understand existing materials or to design new man-made materials. Recent advan-
ces in computer technology have made it possible to compute and visualize effective properties such as 
permeability, and thermal or electrical conductivity on these large images in very short times and using 
surprisingly little memory.

Classical finite-element-methods (FEM) or finite-volume-methods (FVM) are not suited to compute physi-
cal properties on these large images. The bottleneck of these methods is the mesh generation that must 
be done before the actual simulation can take place and can take longer than the solving of the discretized 
partial differential equations. Instead, complex microstructures are best dealt with by fast and memory 
efficient numerical methods that are explicitly designed for them.

In this paper, we present state-of-the-art numerical finite-volume-based and fast Fourier transformati-
on-based methods which do not require mesh generation and are designed to compute effective proper-
ties directly on very large 3D images. We also present relevant application areas where these methods are 
used successfully. We show how simulations on the microscale help to support computational material 
research and development.

Keywords:

Direct Numerical Simulation, Finite-Volume, Fast Fourier Transformation, Pore Morphology, Lippmann 
Schwinger
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1 Introduction

3D imaging methods and devices developed during the last decades allow a penetrating look inside 
natural and man-made materials. Especially micro computed tomography (µCT) scanning devices with 
voxel lengths down to 250 nm and focused ion beam scanning electron microscopy (FIB-SEM) with voxel 
lengths down to 10 nm allow insights into the three-dimensional structure of porous materials. Nowadays, 
3D images with 2000³ (or 8 billion) voxels are a standard size that can be imaged and reconstructed within 
hours.

With the development of 64-Bit technology and increase in computational power, it became possible to 
visualize and compute effective properties on these large 3D images. But very fast and memory efficient 
numerical methods are needed. Many researchers and engineers are interested in effective homogenized 
material properties such as

 � permeability, pressure drop and mean velocity,
 � thermal and electrical conductivity,
 � diffusivity and tortuosity, 
 � stiffness, strain, stress, or elastic moduli,
 � saturation- or compression-dependent properties such as relative permeability.

Classical finite-element or finite-volume methods are not suited to compute physical properties on these 
large images. The bottleneck of these methods is the mesh generation that must be done before the actual 
simulation can take place. In many cases, simulation engineers must adjust the generated meshes manually 
to ensure that simulations converge properly and provide the desired accuracy. In addition, mesh generati-
on often takes more runtime than the actual solving of the discretized partial differential equations (PDE).

For computation of flow properties, Lattice-Boltzmann (LB) methods which do not require mesh generati-
on [1] are used by many researchers. For computation of conductive/diffusive and mechanical properties, 
methods that make use of the fast Fourier transformation (FFT) are advancing fast [2]. Both LB and FFT 
methods work on the voxel grid directly without any meshing.

Our group at Math2Market also makes use of these methods but years ago decided not to develop our LB 
methods any further and instead focus on finite-volume and FFT-based methods. The LB methods have the 
disadvantage of requiring more memory due to the D3Qm lattices. On the other hand, finite-volume-base 
and FFT-based methods can be discretized in such a way that they work on voxel grids just on the origi-
nal variables of the PDE. Thus, they require less memory than LB methods. In addition, the development 
of adaptive grid methods made it possible to additionally reduce the memory usage. The combination of 
geometric two-phase methods and single-phase finite-volume methods also allows to compute saturati-
on-dependent properties such as relative permeability.

In this paper, we give an overview of our state-of-the-art finite-volume and FFT-based methods. In addi-
tion, we present significant application areas where these methods are used successfully and how simula-
tions on the microscale help to incite material research and development.

2 Direct numerical methods

GeoDict, the digital material laboratory software developed by Math2Market GmbH, brings five different 
solution methods into play for the simulation of single-phase and two-phase fluid flow, conduction, and 
mechanics in porous media. First, we start with the single-phase fluid flow solvers. The solvers are in order 
of their inception: Explicit Jump (EJ-Stokes), SIMPLE-FFT, and LIR. The common denominator of all three 
solvers are [1] the direct simulation on 3D images (e.g. µCT scans), [2] their usage of a finite volume formu-
lation, and [3] their discretization of the no-slip boundary conditions. The EJ and LIR methods can also be 
used for the simulation of conductivity, i.e. solving the Poisson equation.
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2.1 The Explicit Jump formulation for Flow and Conduction Simulation.

In 1965, Harlow and Welch [3], introduced a finite volume formulation on a staggered grid. Simplifying this 
formulation for voxels (the little cubes a digital 3D image is thought to be made of), it can be said that the 
pressure variables represent an average for the whole cube and live at the cube centers, whereas the velo-
cities represent transport across faces between the cubes and live on the respective faces of the cube. That 
is, the x-velocity lives on the left and right x-faces of the cube, the y-velocity lives on front and back faces 
of the cube, and the z- velocity lives on the bottom and top faces of the cube.

A predecessor of EJ-Stokes, the FFF-Stokes method by Wiegmann in 2007 [4], used this staggered grid 
formulation, but implemented the no-slip boundary conditions with less accuracy than originally suggested 
by Harlow and Welch, and was based on ideas by Wiegmann and Bube in 2000 [5]. The steady-state Stokes 
equations for laminar flows is described by

μΔu- ∇p = f  momentum conservation   (1) 
         ∇⋅u = 0  mass conservation 
         u|∂Ω = 0  no-slip boundary condition

with constant viscosity μ, velocity u and pressure p in the domain Ω. The domain is periodic and the direc-
tion of the flow is induced by the unit vector f that always points in the direction of one of the coordinate 
axes. The Stokes operator is decoupled into four Poisson problems, and each Poisson problem is solved 
by a Fast Fourier Transform (FFT) approach. The details of FFT-based fast Poisson solvers can be found in 
Swarztrauber [6]. The Poisson problem approach is at the base of the speed of the FFF-Stokes, EJ-Stokes, 
and SIMPLE-FFT solvers. These solvers are made explicitly to work on 3d images, which have the regular 
grid spacing needed to use the FFT and are the main reason for the FFT’s high performance.

The FFF-Stokes solver over-simplified the discretization of the no-slip boundary conditions at the price of 
reduced accuracy for pores in the shape of narrow channels. EJ-Stokes overcomes this limitation by imple-
menting the original boundary conditions from Harlow & Welch (see also Fig.1), i.e. has higher accuracy. 
EJ-Stokes uses the Biconjugate gradient stabilized method [7] to solve the derived non-symmetric linear 
system of equations. A Schur-complement for auxiliary (Explicit-Jump) variables represents discontinuities 
in the flow velocity derivatives and is iterated until the residual has reached a small enough value or until 
the derived permeability has converged sufficiently well.

The natural boundary conditions for the EJ-Stokes solver are periodic boundary conditions for the flow 
variables on all six faces of the 3d image and no-slip boundary conditions on the solid surfaces. Due to the 
staggered grid, no boundary conditions are needed for the pressure variables at the no-slip solid surfa-
ces, periodic boundary conditions are used on the four tangential faces and, in the direction of the flow, a 
discontinuity in the pressure of the magnitude of the specified pressure drop is implemented. Symmetry 
conditions in the tangential direction and constant pressures on inlet and outlet can be enforced by appro-
priate mirroring of the computational domain. 

As mentioned before, the EJ-Stokes solver is specifically made for computations on 3D and 2D images, 
such as segmented CT scans and segmented FIB-SEM scans. A drawback is that the solver allocates memo-
ry also for the solid portions of the image and not only for the pore space. It also converges slowly for low 
porosity structures with high geometric complexity compared to high porosity structures with low geome-
tric complexity. The EJ-Stokes approach does not (yet) extend to the Stokes-Brinkman, Navier-Stokes, and 
Navier-Stokes-Brinkman equations. A strong point is that it typically requires less than 10% of the memory 
needed by a Lattice-Boltzmann implementation on the same image while converging significantly faster for 
the same image and same accuracy. The Explicit Jump formalism also allows to solve the:

∇⋅(β∇U) = f  Poisson equation   (2)

with isotropic conductivity β and scalar temperature (or electric potential) U. Here, harmonic averaging 
is used to compute conductivities at voxel faces and explicit jump variables across material interfaces are 
introduced to represent discontinuities of temperature derivatives. Again, a Schur-complement formulation 
for the jump variables is derived and solved by using the FFT and BiCGStab methods [8]. The convergence 
speed of this method is almost independent of the conductivity contrast which is a very big advantage 
compared to other approaches. 
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2.2  SimpleFFT for Flow Simulations

 SIMPLE-FFT is a variant, and FFT-accelerated version, of the Semi-Implicit Method for Pressure-Linked 
Equations, or SIMPLE [9] algorithm. SIMPLE-FFT is a fi nite-volume method on a staggered grid. With the 
classic SIMPLE algorithm, the fl ow fi eld is fi rstly approximated by solving the momentum equation, in 
which the pressure gradient term is set from an initial guess or calculated using the pressure distribution 
from the previous iteration. The pressure correction equation is formulated and solved to obtain a new 
pressure distribution. Velocities are then corrected. The iterations continue until they reach a certain stop-
ping criterion. 

For porous media, due to their complex connectivity, the classical SIMPLE algorithm has diffi  culty conver-
ging to the solution of the steady state Stokes equations. Solving the pressure correction equation was 
identifi ed as the bottleneck of convergence because the inaccuracy of the pressure correction step requires 
excessively many iterations. In SIMPLE-FFT, the FFT is then used to solve the pressure correction Poisson 
equation exactly instead of just taking a single step. This reduces the iterations and computation times 
dramatically even though the cost of an individual iteration rises signifi cantly.

With no-slip boundary condition on the wall, as shown in Fig. 1, the velocity components ui,j+1, ui,j, and ui,j-1

are the surface variables on the true wall surfaces in the normal direction of a solid, so they are all zero. 
In the tangential direction, because the surface variables are half mesh size off  the computation variables, 
following Harlow and Welsh two cells neighboring to the interface must be considered: one in the solid 
and the other in the void domain. We set vi,j = -vi,j-1 to get the fi rst order approximation of zero velocity on 
the wall.

When there exists unresolved porosity in the structure, i.e., some of the voxels are permeable, the Stokes- 
Brinkman equations can be solved with SIMPLE-FFT by providing the permeability of the porous voxels. 
When the fl ow is fast and Darcy’s law does not hold any more, SIMPLE-FFT solves Navier-Stokes equations, 
and when both fast fl ow and porous voxels are present, Navier-Stokes-Brinkman equations are solved.

SIMPLE-FFT runs on the uniform Cartesian grid of a 3D image and, on each grid cell, three velocity com-
ponents and pressure need to be found. The variables inside the solid are enforced to zero. SIMPLE-FFT 
has its advantages when a structure has low porosity while only the unknown variables in the void spaces 
are to be solved and the pressure correction can be propagated to the velocity correction quickly. Fewer 
iterations and lower runtime are required compared to structures with the same size but higher porosity. 
On the other hand, when the porosity of a structure is higher, there are more unknowns and the momen-
tum equations still need a high number of iterations to solve the velocity fi eld even though the pressure 
correction can be easily found with the FFT algorithm. The memory usage of SIMPLE-FFT is decided by the 
grid size, regardless of the porosity. SIMPLE-FFT requires more memory when compared to the EJ and LIR 
solvers.

2.3  LIR for Flow and Conduction Simulations

 The LIR [10] is the newest, a very fast and memory effi  cient iterative fi nite volume method. The solver 
computes the permeability, as well as velocity and pressure fi elds, on large 3D images. As happens for the 

Fig. 1: Shows a 2D example with the surface variables in the horizontal (circles) and vertical directions (squares).
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SIMPLE-FFT, the LIR solver can be used for the numerical solution of the Stokes, Stokes-Brinkman,  
Navier-Stokes, and Navier-Stokes-Brinkman equations.

Usually, 3D images are represented as regular voxel grids where the number of grid cells grows cubical-
ly. The LIR solver uses an adaptive grid, instead of a regular grid, to reduce significantly the number of 
grid cells. The basis of the adaptive grid is a data structure called LIR-tree (a combination of Octree and 
KD-tree) that is used for spatial partitioning of 3D images [11]. The pores are represented as differently 
sized rectangular cuboid cells. Solid regions do not require any computational memory. The pore space is 
coarsened in areas with small velocity and pressure variations, while keeping the original resolution near 
the solid surfaces and in regions where velocity or pressure vary rapidly.

Variables are arranged in such a way that each cell can satisfy the (Navier-)Stokes(-Brinkman)-equations 
independently from its neighbor cells. Pressure and velocity are discretized on staggered grids (see also 
Fig. 1) but two velocity variables, namely one for each neighboring cell, are introduced instead of using 
one velocity variable on the cell faces. The two velocity variables discretize the two one-sided limits at the 
center of the cell surface. The discretization of the momentum and mass conservation equations yields one 
7x7 linear system (block) per cell. This block structure allows using the block Gauß-Seidel algorithm as an 
iterative solver method. The advantage of that approach is that the Stokes equations can be solved directly 
without using a pressure correction equation, as happens in many other approaches (e.g. SIMPLE).

The LIR solver is very fast and very memory efficient for highly porous structures. For low porosity structu-
res, the solver needs more iterations until the desired accuracy is reached than for highly porous structures. 
Here, the convergence speed depends on the complexity and inhomogeneity of the pore space. The runti-
me per iteration is very low due to the small number of cells. Thus, the solver is also fast and very memory 
efficient for low porosity structures. The convergence of the solver can be increased significantly by two 
methods:

 � Successive Over-Relaxation (SOR) instead of Gauß-Seidel algorithm 
 � Multigrid methods which make use of coarser grids to reduce low-frequency residuals

Limitations of that approach are the modelling of very fast flows with high Reynolds numbers and emer-
ging turbulence and boundary layers. Moreover, modelling of slip-boundary conditions is also very diffi-
cult. However, these limitations apply to all methods that use voxel grids.

Similar to the EJ formalism, the LIR formalism also allows to solve the Poisson equation (stationary heat 
equation). Conductivities at cell faces are computed by harmonic averaging of conductivities. Here, tempe-
rature (or electric potential) live at the cell center and two flux variables discretize the two one-sided limits 
at the center of the cell surface.

2.4 Lippmann Schwinger for Mechanics Simulations

In the previous sections, we discussed three different approaches to solve the (Navier-)Stokes(-Brinkman) 
equations. Two of them can also be used to solve conduction equations. In this section, we present the 
basic idea of a method that is used for linear and non-linear structural mechanics simulations.

For a uniform macroscopic strain E, we solve the boundary value problem (BVP):

∇⋅σ = 0     Equilibrium of stress  (3) 
    σ = C:ϵ    Hooke’s law 
  2ϵ = 2S+∇u*+(∇u* )T

for the stress field σ, strain field ϵ, and the displacement field u*. The BVP or equations of linear elasticity 
consists of the elastic equilibrium equation, Hooke’s law, and periodic boundary conditions. By introducing 
a reference material of homogeneous stiffness C0, the BVP can be transformed into the strain-based  
Lippmann-Schwinger equation, implemented in the FeelMath Solver [12]

(I+Bϵ )ϵ = ϵ+ Γ0*((C-C0 ):ϵ) = E Lippmann-Schwinger equation (4)

The convolution with the Green’s operator Γ0 is solved by FFT according to Moulinec and Suquet [2] . The 
Lippmann- Schwinger equation can also be formulated with respect of stress instead of strain. 
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These equations can iteratively be solved using the Neumann series expansion, the so-called basis scheme.  
Instead of using the Neumann series expansion, Krylov subspace methods can be applied to accelerate 
the convergence of the method but requiring more memory. The formulation allows to handle linear and 
non-linear (i.e. replacing Hooke’s law with a non-linear formulation) material laws as well as isotropic, 
transverse-isotropic, orthotropic, or anisotropic constituent materials.

Similar to the flow solvers, a staggered grid is used to discretize displacement, strain, and stress variables 
[13]. That is, the x-displacements live on x-faces, the y-displacements live on y-faces, and the z-displace-
ments lives on the z-faces of the voxels. The diagonal entries of the strain and stress tensors live on the vo-
xel center, the xy-entries live on the center of the z-edges, the yz-entries live on the center of the x-edges, 
and the xz-entries live on the center of the y-edges of the voxels.

The number of iterations that is required until convergence of the stiffness depends on the largest phase 
contrast ρ in the structure and the solution scheme. If the basic scheme with Neumann series approxima-
tion is used, then the number of iterations grows linearly with ρ. For accelerated schemes where Krylov 
subspace methods are used, the number of iterations grows with √ρ. 

For the computation of compression dependent properties, the displacement field u* used to predict a 
compressed structure. The voxels of the original image are moved along the displacement field and cut 
with a reduced voxel image. The result of that procedure is a gray-value image where a global threshold 
is used to perform a segmentation of the different phases. The threshold is chosen in FeelMath such that 
either mass or volume is preserved.

2.5 Pore Morphology methods for Two-Phase Flow Simulations

The EJ, SIMPLE-FFT, and LIR methods solve the discretized single-phase (Navier-)Stokes(-Brinkman) equa-
tions. As post-processing step, the methods yield the absolute permeability of porous media. However, in 
many application areas, researchers are interested in saturation-depended properties such as relative per-
meability. For relative permeability, we must solve two-phase flow equations instead of single-phase flow 
equations. In these flow regimes, capillary forces caused by surface tension and capillary pressure are often 
dominating compared to viscous forces, i.e. capillary number is low. The solution of these two-phase flow 
equations is very challenging, and runtimes are very high. Here, we present an alternative approach.

The pore morphology method [14], also known as maximum inscribed spheres [15], predicts the distributi-
on of a wetting phase (WP) and a non-wetting phase (NWP) inside a porous medium. The method distribu-
tes two fluids by using morphological operations rather than solving partial differential equations.  
There are two possible scenarios: 

 � Drainage:  the WP is drained from the structure and gets displaced by the NWP
 � Imbibition: the WP imbibes the structure and displaces the NWP.

For drainage, it can be envisioned that spheres are pushed into the structure and placed in the pore space 
where the pore size is greater than a certain radius. The radius is decreased in an iterative process and this 
corresponds to an increase of the capillary pressure. The superposition of all spheres represents the NWP. 
The pore morphology method achieves this placement of spheres by dilation and erosion processes of the 
solid phase with the pore space. Additional connectivity checks [16] with respect to NWP and WP reservoirs 
can be used to increase the validity of the distributions. These connectivity checks allow the algorithm to 
introduce residual phases where parts of the NWP are trapped and cannot leave the simulated domain. 

The output of the algorithm is a finite sequence of quasi-stationary states. Each state is a 3D image again 
that encodes the solid phase, WP, and NWP. As post-processing, the Young-Laplace equation based on the 
radii of the inscribed spheres and the interfacial tension predicts the capillary pressure

pc=2 γ/r cosα  Young-Laplace equation  (5)

with capillary pressure pc, surface tension γ, pore radius r, and contact angle α. The method was extended 
by Schulz et al. [17] to handle multiple contact angles within the same structure. This can be achieved by 
using different radii for the dilation process but a single radius for the erosion process. It is also possible 
to simulate hysteresis processes where drainage and imbibition happen in series. The highest capillary 
pressure that can be simulated depends on the voxel length of the structure. One of the current limitations 
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of these methods is that mixed wettability cannot be simulated. Mixed wettability means that a fluid is 
wetting on one material and non-wetting on another material within the same simulated domain. 

The computation of relative permeability is done with the sequence of quasi-stationary states. For relative 
permeability of the WP, for instance, we solve a single-phase flow inside the WP and treat the interface 
between WP and NWP as immobile no-slip interface.

3 Application examples

In this section, we present application areas and refer to literature where the above methods have been 
used. Each application area involves distinct media and exhibits different numerical challenges.

3.1 Filtration

Filters are essential in industry and in everyday life, to preserve machine functionality and for protection 
against toxic and allergenic substances. The demands on filter efficiency, selectivity, capacity, and filter 
lifetime increase constantly and highly specialized solutions are needed for every filtration application.  
Simulations help filter media makers and filter manufacturers understand and productively improve exis-
ting filter materials. Important filter characteristics are:

 � initial pressure drop: pressure drop between inlet and outlet of a clean filter,
 � filter efficiency:  quotient of captured particles over total particles,
 � filter life-time:  filtration time until a certain pressure-drop increase is reached,
 � filter capacity:  mass of particles that can be deposited inside the filter

Many filter media are fibrous in nature and their properties depend on media thickness, fiber diameter, 
fiber orientation, and pore size distributions.

The permeability, flow resistivity and initial pressure drop can be computed with the EJ, SIMPLE-FFT, or LIR 
solvers. Based on flow resistivity, even the frequency-dependent acoustic absorption of the fibrous media 
can be obtained [18]. The filtration process happens in two stages: depth filtration, with particles being 
deposited inside the filter, and later cake filtration, with particles being deposited on top of the filter (see 
Fig. 2). The filtration process is simulated by a Lagrangian formulation of particle transport [19]. First, a 
flow field is computed. Second, particles start from the inlet and move due to their own mass, the friction 
with the fluid and even Brownian motion, and may be captured on the fibers or on previously deposited 
particles. These two steps are performed in sequence to ultimately clog the filter. Electrostatic forces can 
be considered using the negative gradient of a computed potential field [20]. The filter efficiency, life-time, 
and capacity are obtained as post-processing of a filtration simulation with good agreement compared 
to measurements [21]. Particle diameters usually span multiple length scales. Particles much larger than 
a voxel are represented as empty-solid model and particles much smaller than a voxel are modelled by a 
homogeneous porous media approach [22].

Fig. 2: CT-scan and segmented 3D model of fibrous filter media (left). Stokes flow field through a filter media (center). 
Captured particles on top and inside of a filter media (right).
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3.2 Personal care materials

Many personal care products partly consist of highly porous fiber material. For example, modern diapers 
are high-tech products consisting of several functional nonwoven and superabsorbent polymer layers. The 
nonwoven layers must be highly permeable so that fluids can pass through fast and reach the superabsor-
bent polymer layers. In addition, the permeability changes under mechanical loads.

With the LIR and Explicit Jump methods, absolute permeability is predicted fast and precisely [23]. The pore 
morphology method allows to predict drainage and imbibition capillary pressure curves that match labora-
tory measurements. The mechanical deformation of these nonwoven layers is effectively predicted with the 
Lippmann-Schwinger methods in the FeelMath solver.

3.3 Digital Rock Physics

Digital rock physics (DRP), i.e. the determination of physical rock properties by performing numerical 
simulations on 3D scans of rock samples, represents an innovative technique that reduces time and cost 
compared to conventional laboratory experiments. DRP can be used as a complementary technique to 
these experiments, also serving as a quality assurance tool of the experiments and vice versa. Besides the 
increase in efficiency, DRP also allows insights into the actual processes taking place in the samples and is 
considered a game changer for the Oil and Gas industry.

One of the first steps in a simulation workflow is the image acquisition, processing, and segmentation 
to create a digital rock model [24]. These steps are crucial and must be done very carefully. Researchers 
and petroleum engineers are often interested in porosity, pore-body and pore-throat size distributions, 
tortuosity, absolute and relative permeability, electrical conductivity, stiffness, and compression-dependent 
properties.

The porosity is often below 20%, pore networks are complex, and flow percolation paths can be narrow. 
Fig. 3 shows the flow field inside such a complex Berea sandstone. Properties computed by different sol-
vers may deviate up to 50% depending on the discretization, boundary conditions, or stopping criteria [25]. 
The EJ, SimpleFFT, and LIR flow solvers show a very good performance in a benchmark study with six other 
solvers [26]. The adaptive grid of the LIR solver allows to predict permeability on very large rock models 
with more than 5 billion voxels [27]. Computed capillary pressure curves of the pore morphology method 
and computed relative permeabilities agree with measurements [28].

3.4 Battery cathode materials

The development of new battery materials and designs has become crucial in recent years. Electromobility 
is a worldwide growing trend bringing heavy demands on modern batteries. Batteries should have high 
capacity, low charging time, be safe to use, and sustain a long-life cycle. These requirements are hard to 
satisfy all at once. A lithium-ion battery is built with a cathode side and an anode side with a separator bet-
ween them. The cathode and anode consist of active material that hosts lithium atoms. The active materials 
are embedded in binder material and carbon black with high electric conductivity. 

Fig. 3: CT-scan of a Berea sandstone (left). Stokes flow field through a segmented Berea sandstone (center). Adaptive 
grid visualization of the LIR-Stokes solver (right).
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The pore space is filled with electrolyte which is diffusive for lithium ions. During battery charging, lithium 
atoms leave the active material while losing an electron and turning into lithium ions (Li+). They travel 
through the electrolyte and the separator, from the cathode to the anode side. The electrons (e-) also tra-
vel from the cathode to the anode side but through the binder and the surrounding electric circuit. Then, 
lithium ions combine with the electrons and the resulting lithium atoms enter the active material on the 
anode side. 

In an ideal battery, the amount of binder and its distribution provides a very high electric conductivity while 
leaving enough space for the electrolyte with a high diffusivity. The conductivity, diffusivity, and tortuo-
sity are properties predicted using the Explicit Jump or LIR methods [29]. During battery charging, active 
materials grow on the anode side and shrink on the cathode side. Subsequent internal mechanical stress 
is predicted using the Lippmann-Schwinger methods [30]. The simulation workflow shown in Fig. 4 has 
similarities with the DRP workflow.

3.5 Gas Diffusion Layers (GDL)

Fuel cells are another promising technology used in automotive industry to convert chemical energy into 
electricity through electrochemical reactions of hydrogen and oxygen. The structure of a fuel cell has simi-
larities to a battery: anode side, a separator, and a cathode side. The GDL is a nonwoven porous structure 
made of carbon fibers that plays an important role for the transport of reactants and products in the anode 
and cathode side. Hydrogen comes from the anode side, loses its electron and travels as hydrogen-ion 
through the separator to the cathode side. The electrons travel through the conducting carbon fiber and 
the surrounding electric circuit to the cathode side. Hydrogen-ions, electrons and oxygen merge to water 
and heat at the cathode side.

Important properties of GDL are the distribution of water, capillary pressure, relative permeability of water, 
gas diff usivity, the electrical and thermal conductivity, and its behavior under mechanical compression 
[31]. The EJ and LIR conduction solvers predict the gas diffusivity and electric conductivity whereas the EJ, 
SIMPLE-FFT, and LIR stokes flow solvers predict the absolute permeability in agreement with measure-
ments for different levels of compression [32]. The fibers of a GDL can be hydrophilic or hydrophobic de-
pending on their coating, e.g. under Teflon treatment. The distribution of water and the capillary pressure 
curves can be predicted with the pore morphology methods for both cases [33]. The water acts as a barrier 
to the gas diffusion process. The computed distribution of water allows then to compute relative permea-
bilities, as well as relative gas diffusivities [34].  Thermal management is also one of the crucial topics in fuel 
cells, especially in GDL. With the conduction solvers, it is possible to predict thermal conductivity [35].

3.6 Fiber Reinforced Composites

Composite materials and digital material engineering of composites are essential in current component 
development to improve the functionality and lightweight design in automotive and other industries, and 
in many industrial applications. The simulation tool’s ability to create realistic representative microstruc-
ture models and to determine their physical material properties, helps in quicken product development 
profitably. Lippmann-Schwinger methods and the FeelMath solver are especially suited for this application 
because they allow a fast and accurate prediction of the full mechanical stiffness tensor, as well as elastic 
moduli, which agrees with measurements [36]. With non-linear material models it is possible to simulate 
the evolution of deformation and damage within microstructures [37].

Fig. 4: Workflow for battery simulation starting from image acquisition, image processing, segmentation, and predic-
tion of properties.



Specialized methods for direct numerical simulations in porous media

10

4 Conclusions

The presented numerical methods predict flow, conduction, and mechanical properties with high agree-
ment to experimental measurements. The methods are highly optimized and designed to work directly 
on 3D images that come from µCT or FIB-SEM devices. Computed physical properties help engineers and 
researchers to understand natural materials and optimize man-made materials on their way to improve 
processes or material development.
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